
ROOT and Parallelism
Lorenzo Moneta
CERN, PH-SFT

Third International Workshop for Future
Challenges in Tracking and Trigger

Concepts
27-29 February 2012

Monday, February 27, 12

Outline
ROOT: new and planned developments
Parallelism in ROOT

Parallelism in I/O
Parallelism in data analysis (fitting)

Vectorization
vectorization of ROOT matrix and vector libraries

Parallel random numbers
PROOF

2
Monday, February 27, 12

ROOT Going Strong
Ever increasing number of users

5600 forum members, 56850 posts, 1300 mailing list
members
Used by basically all HEP experiments and beyond

3
Monday, February 27, 12

New ROOT developments
New interpreter CLING to replace CINT
ROOT porting to iOS devices and ROOT iOS
browser application

new OSX graphics native support
Javascript based ROOT browser
I/O performance improvements:

Parallel merge of ROOT files
Improvements in data analysis tools

better support for parallelization
4

Monday, February 27, 12

Next ROOT Releases

ROOT 5.34 in the summer

with iOS support and JavaScript ROOT
browser

ROOT 6 at the end of the year

with Cling based ROOT

5
Monday, February 27, 12

New Interpreter
Replacing good old CINT by new, shining Cling
Cling is based on LLVM and Clang compiler libraries

LLVM/Clang “new” open source compiler suite
Default compiler on OSX Lion

Cling released in July 2011
Fully functional C and C++ interpreter (including C++11)
Uses Just-In-Time compilation
Still a few issues to solve (e.g. reloading of code)

Integration with ROOT starting now
Interfaces via TCling and TClass
Use precompiled header files (PCH’s) as dictionary
repository (no more huge compiled dictionaries)

6
Monday, February 27, 12

Parallelism in I/O
3 approaches for parallelizing I/O

Parallel Merge via external process
Support for one TFile per thread

Currently requires meta data (TClass, TStreamerInfo) to
be fully build before starting parallel operation.
Planning to lifting this restriction in ROOT 6 (requires
cling).

Internal use of spare cores
Ability to read multiple TBranch data in parallel

Top level branches can be uncompressed and un-
streamed independently.

Prefetching of remote file content as a separate thread.
7

Monday, February 27, 12

Parallel Merge

New class TParallelMergingFile
A TMemFile that on a call to Write will

Upload its current content to a parallelMergerServer
Reset the TTree objects to facilitate the new merge.

New daemon parallelMergeServer
Receive input from local or remote client and merger into
request file (which can be local or remote).
Fast merge TTree. Re-merge all histogram at regular
interval.

8

 TFile::Open("mergedClient.root?pmerge=localhost:1095","RECREATE");

Monday, February 27, 12

3

Final File
Client

Client

Client

Monday, February 27, 12

4

Final File

Client

Client

Client

Monday, February 27, 12

Data Analysis Parallelism
Statistical techniques all based on the likelihood function

each event is described by a probability density function
(PDF)

All statistical methods require evaluation of the likelihood
maximum likelihood fit for parameter estimation
integral of likelihood for Bayesian methods

profile likelihood distribution for frequentist methods (toy
generation and fitting)

11

L(x|✓) =
Y

i

P (xi|✓)P (x|✓) Likelihood:

Z
L(x|µ, ⌫)⇧(µ, ⌫)d⌫

�(µ) =
L(x|µ,

ˆ̂
⌫)

L(x|µ̂, ⌫̂)

Monday, February 27, 12

Data Analysis Parallelization

Use typically RooFit for building complex PDF and RooStats for
running statistical analysis

models with many PDF, many observables and a lot of parameters
e.g. Higgs combination (more than 200 parameters and several
channels)

Possible various level of parallelizations:
PDF evaluation
Loop on events for computing log-likelihood
Algorithms (e.g Minuit) require multiple likelihood evaluations
Loop on toy data analysis (on various likelihood minimization)
Repetition of same analysis on different inputs (analysis points)

12
Monday, February 27, 12

Example: Higgs Searches
Higgs search results require numerous minimization of
complex likelihood functions (> 200 parameters)

)2Higgs boson mass (GeV/c
100 200 300 400 500 600

SM
σ/

σ
95

%
 C

L
lim

it
on

-110

1

10

 ObservedSCL
σ 1± Expected SCL
σ 2± Expected SCL

Bayesian Observed
Asymptotic CLs obs

 ObservedSCL
σ 1± Expected SCL
σ 2± Expected SCL

Bayesian Observed
Asymptotic CLs obs

-1 = 4.6-4.7 fbintCombined, L
 = 7 TeVsCMS Preliminary, ObservedSCL

σ 1± Expected SCL
σ 2± Expected SCL

Bayesian Observed
Asymptotic CLs obs

-1 = 4.6-4.7 fbintCombined, L
 = 7 TeVsCMS Preliminary,

13
Monday, February 27, 12

Minuit Parallelization

Parallelization of Migrad minimization algorithm
Each Migrad iteration consists of:

computing function value and gradient to find Newton
direction
computing step by searching for minimum along the
Newton direction
if satisfactory improve calculation of Hessian matrix, H
invert to get new matrix V = H-1
repeat iteration until expected distance from minimum
smaller than tolerance

14
Monday, February 27, 12

Minuit Parallelization
In case of many parameters (> 10) and complex function
evaluation, gradient calculation dominates the process:

al least 2 * NDIM function evaluation are needed

Parallelize calculations by using a thread for computing
each partial derivative
Use OpenMP (multi-thread) or MPI (multi-processes)
Available in ROOT for Minuit2 (new C++ version of
Minuit)

since version 5.22 (3 years ago)
15

⇤i(x) =
⇥f

⇥xi
⇥ f(xi + �xi)� f(xi � �xi)

2�xi

Monday, February 27, 12

Results for Minuit Parallelization

unbinned fit with 20
parameters using
openMP

complex BaBar fitting
parallelized using MPI
(A. Lazzaro)

16
Monday, February 27, 12

Minuit Parallelization
Parallelization in Minuit is independent of user code

requirement only of thread safety function evaluation
when using multi-thread implementation (OpenMP)

problems when function uses cached values (e.g.
function normalization)

Alternatively, one can parallelize evaluation of
minimization function (log-likelihood function)

more efficient, but requires user to change code or to
use a fitting package providing it (e.g. RooFit)
ROOT fitting classes are not providing this
parallelization, but it is planned to do it

17
Monday, February 27, 12

RooFit Parallelization

RooFit: toolkit for data modeling and fitting (parameter
estimation)
RooFit supports parallelization in evaluating the log-
likelihood function

multi-process parallelization
use fork to parallelize likelihood on multi-processes

pdf->fitTo(data, NumCPU(8));
Support also for PROOF and PROOFLite

useful for multiple likelihood fits (e.g. for toy studies,
goodness of fits, etc.)

18
Monday, February 27, 12

RooStats Parallelization
RooStats: advances statistical tools for interval estimation (e.g.
limits) and hypothesis tests (estimation of discovery significance)

frequentist tools are based on toys generations
Support for parallelization of toys (generation and fitting) using
PROOF

results from each toy (ROOT object) are automatically merged and
returned to the user as running a serial job
PROOFLite found to be very convenient to use on user desktops
memory can start to be a problem with very large models and many
cores

Trivial parallelization performed at job level
run several jobs on Grid or on cluster each with a small number of toys
RooStats provides the tools for merging results but users still needs to do it
this is now the most common usage of RooStats for the complex analysis

19
Monday, February 27, 12

Vectorization of PDF
Openlab fitting prototype
Organize data (observables) as vectors
Evaluate PDF not on a single observables but on vector
of observables

Collect data vector of pdf and combine them to evaluate
the log-likelihood (e.g. summing the vector values)

Allows for SIMD vectorization during the pdf
evaluation

20

Pi = P (xi|✓) =) �!P (�!x |✓)

Monday, February 27, 12

Openlab Prototype

21
Possible various level of parallelization

Monday, February 27, 12

Openlab Prototype
Studied parallelization at various levels using multi-
threads

CPU with OpenMP
GPU with CUDA or OPENCL
hybrid setup to optimize CPU/GPU load with OpenCL

Levels:
parallelize loop on the single PDF evaluation of the
observables
parallelize outer loop for summing the final result

Try to have minimal change in RooFit code
results reported in various presentations and reports
from Openlab (see for example EPRINT: CERN-IT-2011-012)

22
Monday, February 27, 12

http://cdsweb.cern.ch/record/1395088/files/CERN-IT-2011-012.pdf
http://cdsweb.cern.ch/record/1395088/files/CERN-IT-2011-012.pdf

Likelihood Parallelization
Inner loop parallelization:

small memory footprint and better for race conditions
suffer from OpenMP overhead in having multiple
parallel regions
require manage a large number of arrays with the
evaluation results
cache problems when evaluating composite PDF’s

much better scalability when using processors with
larger cache

GPU -> CPU communication problems for summing
final results

23
Monday, February 27, 12

Likelihood Parallelization
Outer loop parallelization:

better scalability
suffer from race conditions
more difficult to implement, it requires more changes
in original code

developed prototype has many changes and is
difficult to port in RooFit production code

Conclusions
parallelizing existing code is not easy
importance of optimizing and redesigning code to
have good scalability for many threads

this will result also in a faster scalar version of the code 24
Monday, February 27, 12

Vectorization
Another parallelization dimension

vector processing using SIMD (Single Instruction Multiple Data)

Perform numerical operations in parallel
size of registers depending on architectures

SSE : 128 bits : 2 double’s or 4 float’s
AVX: 256bit : 4 double’s or 8 float’s)

Compilers can perform auto-vectorization of loops
require data organized in vectors and iteration independence
branches (if statement) can break vectorization
new compilers (e.g. gcc 4.6) are much better

Can use special instructions for processors (intrinsic)
SSE or AVX instructions

Libraries exist to hide this complexity to user (e.g. Vc library)
25

Monday, February 27, 12

New ROOT Physics Vectors
Classes for 3D and 4D vectors and their operations
(GenVector package)

template on contained type
i.e. single or double precision

template on coordinate system type
i.e. cartesian, polar and cylindrical

no virtual table

26

LorentzVector<PxPyPzE<double> >

LorentzVector<PtEtaPhiE<double> >

LorentzVector<PxPyPzM<double> >

LorentzVector<PtEtaPhiM<double> >

Fast
creation
time

Minimize
temp
objects

Advantage in performances
using GenVector

Monday, February 27, 12

SMatrix Package
Matrix and vector classes of arbitrary type and for fixed (not dynamic)
matrix and vector sizes (must be known at compiled time)

SMatrix< double, N1,N2>
SVector< double, N>

Complementary to TMatrix
Optimized for small sizes (N < 10)

use expression templates to avoid temporaries
facilitate vectorization and loop un-rooling

Use by LHC experiments for tracking (Kalman filters)

27

Large CPU performance
gains compared to
other matrix packages
not using templates

Monday, February 27, 12

Vc Library
Vc provides new vector types:

Vc::float_v or Vc::double_v
float_v::Size will depend on architecture (e.g 8 on
AVX)
basic operations (+,-,/,*) for these types are
supported
also basic Math and transcendental functions
(sin,cos, log,etc..)

User can vectorize code without need to use and know
the intrinsic instructions

28
Monday, February 27, 12

Vc in ROOT
Tried to use Vc as template argument for physics vectors and for the
matrices (SMatrix)

SMatrix<Vc::double_v, N> , SVector<Vc::double_v, N>
LorentzVector <PxPyPzE< Vc::double_v > >

when looping on set of vector or matrices, loop size reduced by the size
of the Vc type (NITER = NITER / double_v::Size)
useful to use it in reconstruction (e.g tracking) or simulation applications

example: Kalman filter equations for updating error matrix
Performed some tests a couple years ago

mixed results obtained
explained as some compiler limitation at that time (gcc 4.4 was
used)

Need to try now with new compiler versions before deciding for
inclusion in ROOT

if found useful could be added as an optional package to ROOT distribution
29

Monday, February 27, 12

AutoVectorization
Implement code in a way that can be vectorized
automatically by the compiler

no need to use intrinsic
CMS is prototype new implementation of mathematical
functions (from Cephes)

provide vector API
double exp(double x) ⇒ void exp_vect(const double *, double *, int)

Obtained promising results
need to use latest compiler version (4.7) for the
vectorization

These new vector function could be eventually included
in ROOT

30
Monday, February 27, 12

Parallelization of RNG
Parallelization of pseudo-random numbers generators

most used generator are very fast (RanLux is maybe the exception)
time in generating random numbers is often not critical in majority of our
applications

one does much more time consuming things with a random number
Using the random numbers in parallel application is more problematic

many good generators have a very large state
e.g. Mersenne and Twister (TRandom3) has state of 624 words (32 bits)
this makes them problematic to run on GPU

problem in seeding and bookeeping many independent sequences
need generator with very long periods, which normally can be obtained
only with large states

need care in seeding the generators to have really independent states
or dedicated parallel generators which allow to jump in the sequence

need to know in advance max length of each stream

31
Monday, February 27, 12

New Parallel Random Numbers
New class of PRNG based on counters without a state (J. Salmon et al.,
see http://www.thesalmons.org/john/random123/papers/random123sc11.pdf)

based on a counter n and key k
k : xn = fk(n)

instead of an iterative sequence
xi -> xi+1 = f(xi)

they have no state (can be easily used in parallel applications)
generators derived from algorithms used in cryptography
awarded best paper at the SC11 conference

These new generators pass the most stringent tests
BigCrush of TestU01 from L’Ecuyer

but are empirical generators (lack of mathematical analysis) and based
very complex algorithm
interesting to watch this new development

32
Monday, February 27, 12

http://www.thesalmons.org/john/random123/papers/random123sc11.pdf
http://www.thesalmons.org/john/random123/papers/random123sc11.pdf

PROOF Architecture

33
Monday, February 27, 12

PROOF Lite

PROOF optimized for multicore machines
Zero-config setup (no config files, no daemons)

Same API, same code as for standard PROOF
Very popular, especially in ATLAS

34
Monday, February 27, 12

PROOF on Demand

Tool-set developed by A.Manafov (GSI) to setup
PROOF on any resource management system

Uses RMS to start the worker daemons; master
runs on a dedicated machine, e.g. the desktop

Easy installation

RMS job managers provided via plug-in: gLite,
Condor, PBS, OGE, LSF, ssh
http://pod.gsi.de

35
Monday, February 27, 12

http://pod.gsi.de
http://pod.gsi.de

PoD

PoD main ingredient for

PEAC (PROOF Enabled Analysis Cluster)

Cluster management based on PoD

PROOF on the GRID

via gLite (ATLAS Tier2)

full integration (AliEN)

36
Monday, February 27, 12

Improvements in PROOF
Improved connection layout, remove single point of failure
Result merging optimization (parallel tree merging)
Packetizer redesign

Large number of events of ~same size (analysis)
Small number of events of different sizes (reconstruction)
Non-homogenous data distribution (local, networked data)
Dynamically handle new work, i.e. new files

Dynamic Multi-Master setup
Improve scalability on a large cluster (grid, clouds, many-
cores)
Elastic sessions
Large scale data set management

37
Monday, February 27, 12

Summary
Working in ROOT in improving support for parallel
architecture

planning to improve thread-safety of code
provide support for parallel algorithms

example of Minuit, provide a version which can be used in
parallel without changing user code

opportunity to work on optimize and parallelize algorithm
at the same time

 Started to investigate parallelization in vector and matrix
classes

Vectorization looks promising
parallelization of large matrix computations less relevant for
our community

38
Monday, February 27, 12

New Concurrency Forum
Parallelization activities happening within a new forum
on concurrency model and framework organized by the
CERN SFT group

participation from Fermilab and LHC experiments
regular meeting every two weeks

Development of various prototypes (demostrators) in
2012
Adaptation and porting to LHC experiments during 2013
shutdown

development of some functional components which can
be integrated in current experiment frameworks

see http://concurrency.web.cern.ch/
39

Monday, February 27, 12

http://concurrency.web.cern.ch/
http://concurrency.web.cern.ch/

